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Quantum cellular automata (QCA) is an innovative approach that incorporates quantum entities in

classical computation processes. Binary information is encoded in different charge states of the QCA

cells and transmitted by the inter-cell Coulomb interaction. Despite the promise of QCA, however, it

remains a challenge to identify suitable building blocks for the construction of QCA. Graphene has

recently attracted considerable attention owing to its remarkable electronic properties. The planar

structure makes it feasible to pattern the whole device architecture in one sheet, compatible with the

existing electronics technology. Here, we demonstrate theoretically a new QCA architecture built upon

nanopatterned graphene quantum dots (GQDs). Using the tight-binding model, we determine the

phenomenological cell parameters and cell–cell response functions of the GQD-QCA to characterize its

performance. Furthermore, a GQD-QCA architecture is designed to demonstrate the functionalities of

a fundamental majority gate. Our results show great potential in manufacturing high-density ultrafast

QCA devices from a single nanopatterned graphene sheet.
Introduction

The miniaturization of the electronic devices is reaching the size

limit where the system dynamics is governed by quantum

mechanics. As a result, great efforts have been made in looking

for different technologies for processing and storing information

that can effectively replace the classical electronics.1–5 QCA6 is

one of the solutions that allows the development of classical

computation processes with quantum entities.

Since the initial proposal by the Notre Dame group,6 QCA has

attracted much attention because of its promise of logic circuits

with very low power consumption, scalability, and the absence of

interconnections.7–10 QCA is a new computational paradigm, in

which the binary information is encoded in the charge state of

a cell composed of a small number of QDs. Each QCA cell has

two degenerate ground states; the Coulomb interaction between

the neighboring cells lifts the degeneracy and results in a ‘‘1’’ or

‘‘0’’ logic state of the cell. The outcome of a logic computation is

obtained by enforcing boundary conditions (the controlled input

signal) in a two-dimensional array of QCA cells and letting the

system relax to its ground state (the binary information is

transmitted in this process). Since no current flows between QCA

cells, the heat dissipation in the QCA circuit is very low, so it is

potentially an ideal approach for building ultra-large scale inte-

grated electronics.

Despite the theoretical merits of QCA, the practical realization

of this new computing paradigm has been hindered by the lack of
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suitable building blocks for QCA cells. Semiconductor technol-

ogies that are being considered for the QCA implementation

would operate only in cryogenic temperatures due to the large

cell size, rendering the conventional QCA9,10 fail to work at room

temperature. The molecular QCA would in principle overcome

this difficulty,11–13 as the small size of molecular QDs makes the

Coulomb energies large enough for room temperature operation.

However, currently there is no effective process capable of self-

organizing molecular QDs at precisely controlled locations.

Therefore, the main challenge has been to identify the best

candidates of QDs as building blocks for QCA.

Here, we propose a new QCA architecture built upon the

nanopatterned GQDs. Using the tight-binding (TB) model, we

show that the binary information of QCA can be encoded in

different charge states of the coupled GQDs. We derive the

phenomenological cell parameters of the GQD-QCA and char-

acterize its operation performance from the calculated cell–cell

response function. Furthermore, a QCA array that serves as the

fundamental (NOR and NAND) majority gate is designed for

evaluation. Since GQD-QCA can be potentially made by nano-

patterning techniques compatible with the existing electronics

technology,14–17 our results show great promise for constructing

high-density ultrafast GQD-QCA devices.
Results and discussion

The basic requirement for constructing the QCA device is to

design a QCA cell that contains bistable charge states for storing

the ‘‘0’’ and ‘‘1’’ binary information. One way to create the GQDs

is to construct a semiconductor–metal–semiconductor (SMS)
Nanoscale, 2011, 3, 4201–4205 | 4201

http://dx.doi.org/10.1039/c1nr10489f
http://dx.doi.org/10.1039/c1nr10489f
http://dx.doi.org/10.1039/c1nr10489f
http://dx.doi.org/10.1039/c1nr10489f
http://dx.doi.org/10.1039/c1nr10489f
http://dx.doi.org/10.1039/C1NR10489F
http://pubs.rsc.org/en/journals/journal/NR
http://pubs.rsc.org/en/journals/journal/NR?issueid=NR003010


Pu
bl

is
he

d 
on

 2
5 

A
ug

us
t 2

01
1.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

U
ta

h 
on

 1
1/

10
/2

01
3 

23
:1

2:
57

. 

View Article Online
graphene nanoribbon (GNR) junction,18 as shown in Fig. 1a,

where the width and length of the GQD are labeled by integer

W and M1. The electronic structure of such GQD is calculated

by the nearest-neighbor (NN) p-orbital TB model with

hopping parameter g ¼ 2.66 eV. The density of state (DOS) is

determined by direct diagonalization of the Hamiltonian

H ¼ Hc þ
Pr

L þPr
R, where Hc is the Hamiltonian of the GQD

(zigzag GNR),
Pr

L and
Pr

R are self-energy contributions from

the left and right leads (armchair GNRs). We note that Guo

et al.19 have shown that including higher-order hopping param-

eters in the TB model will break the electron-hole symmetry, but

will not remove the QD states inside the gap, which is consistent

with previous DFT results.20 Fig. 1b shows the density of state

(DOS) of the GQD with W ¼ 7 and M1 ¼ 3. There are two

confined states (QD states) within the energy band gap, indi-

cating that such SMS junction can be used as a QD. The number

of QD states increases with the increasing width/length of the

SMS GNR junction,18 but we can always have one electron to

occupy the lowest unoccupied QD state by adjusting the Fermi

level through the back gate.

It is straightforward to extend the design of single GQD to two

coupled GQDs, as shown in Fig. 1c. If one extra electron is added

to the system, it can occupy either one of the QDs, leading to two

degenerate ground states that constitute the bistable charge

states of a QCA cell. The DOS of the QCA cell (two coupled

GQDs, W ¼ 7, M1 ¼ 3 and M2 ¼ 3) is shown in Fig. 1d.

Comparing to Fig. 1b, the single QD state is split into two hybrid

QD states due to the coupling between the two QDs. The

wavefunctions (j1 and j2) of the hybrid QD states with energy E1
Fig. 1 Single and coupled GQDs. (a and c) Schematic of the single and

coupled GQDs, W and M1 denote the width and length of the QD, M2

denotes the apparent inter-dot distance, and the dashed rectangles

enclose the QD region. (b and d) Density of state of the single and

coupled GQDs with W ¼ 7, M1 ¼ 3 and M2 ¼ 3. E1 and E2 denote the

energy of the hybrid QD states.

4202 | Nanoscale, 2011, 3, 4201–4205
and E2 are shown in Fig. 2a and b. Recombining these two

hybrid states, we obtain the non-interacting QD states

(jdot1 ¼ ðj1 � j2Þ=
ffiffiffi
2

p
and jdot2 ¼ ðj1 þ j2Þ=

ffiffiffi
2

p
), which are

localized at the right and left junction region, respectively, as

shown in Fig. 2c and d.

The QCA cell state can be represented by three cell parameters:

the charging energy (on-site energy), the inter-dot coupling

energy (hopping energy) and the effective inter-dot distance,

which are defined as21 E0 ¼ (E2 + E1)/2, t ¼ (E2 � E1)/2 and

R ¼ 1=½
X
.r1;

.r2

jjdot1ð.r1Þj2jjdot2ð.r2Þj2=j.r1 � .r2j�, respectively.

The dependence of these cell parameters on the apparent inter-

dot distance (M2) is shown in Fig. 3. The charging energy and the

inter-dot coupling energy decrease monotonically with the

increasing M2, while the effective inter-dot distance increases

linearly with the increasing M2. The inter-dot coupling energy is

determined by the wavefunction overlap between the two non-

interacting QD states, which are mainly localized at the zigzag

junction region (see Fig. 2c and d). As the overlap decreases with

the increasing M2, so does the inter-dot coupling energy. Mean-

time, the QD charging energy gradually decreases towards the

value of single isolated QD as the inter-dot coupling energy

decreases.

Using these cell parameters, we can further illustrate the

relationship between the geometric structures of the GQDs and

QCA cells, and construct a simple phenomenological model to

describe the functionality of QCA arrays,21 i.e. calculating the

ground state charge distribution in QCA arrays under the

enforcing boundary conditions. In our work, we use the two-dot

QCA cells, rather than the more common four-dot cells studied

in previous theoretical works. In the Hilbert space spanned by

the two non-interacting QD states (jdot1 and jdot2), the Hamil-

tonian of the QCA cell (two coupled GQDs) can be written as

Hcell
0 ¼

X
i¼1;2

E0ni þ t
�
aþ1 a2 þ aþ2 a1

�
: (1)

Here a+i , ai and ni ¼ a+i ai are the creation, annihilation and

number operators for an electron at QD i (i¼ 1, 2). If many QCA

cells are put together, the potential distribution at one dot in

a given cell will depend on the charge density at every dot in all
Fig. 2 Wavefunctions of the hybrid and non-interacting QD states in

a two-dot QCA cell. (a and b) Wavefunctions of the hybrid QD states

with energy E1 and E2 shown in Fig. 1d. (c and d) Wavefunctions of the

non-interacting QD states constructed from the linear combination of the

two hybrid QD states. The radii of the circles around each atom corre-

spond to the absolute values of the wavefunction, red (blue) indicates

positive (negative) sign.

This journal is ª The Royal Society of Chemistry 2011
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Fig. 3 Phenomenological GQD-QCA cell parameters. (a) Schematic of

QCA cells and cell parameters. (b) Charging energy, (c) inter-dot

coupling energy and (d) effective inter-dot distance as a function of the

apparent inter-dot distanceM2 (see Fig. 1c). The width and length of the

QD are W ¼ 7 and M1 ¼ 3.
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other cells. Beginning with an initial guess for the densities in all

the cells, the perturbation Hamiltonian potential of the cell k due

to the charges in all other cells is given by

Hcell
k ¼

X
i¼1;2

Vk
i ni ¼

X
i¼1;2

" X
msk; j

e2

4p3

rmj � r

jR.m; j � R
.

k;ij

#
ni: (2)

Here Vk
i is the potential at dot i in the cell k. We denote the

position of dot j in the cell m as
.
Rm;j (Fig. 3a), and the single-

particle density at QD j in the cell m as rmj . To maintain charge

neutrality, a fixed positive charge �r ¼ 0.5 is assumed at each dot.

Solving the Schr€odinger equation for each cell,

E|jk
0i ¼ (Hcell

0 + Hcell
k )|jk

0i, (3)

we obtain the ground-state wavefunction at zero degree of

temperature. From the ground-state wavefunctions, the new

single-particle densities are calculated as

rk1,2 ¼ hjk
0|n1,2|j

k
0i. (4)

Eqn (1)–(4) are self-consistently solved until the converged

ground-state charge density is obtained. To describe the charge

distribution in each QCA cell, we adopt the quantity of cell

polarization1 to measure the relative charge occupation in the

two QDs within a cell. The polarization of the cell k is defined as

Pk¼ (rk1 � rk2)/(r
k
1 + rk2), where r

k
1 (r

k
2) is the charge density at QD 1

(2) in the cell k. If one electron is entirely localized on QD 1, then

Pk ¼ 1; if the electron is on QD 2, then Pk ¼ �1. Without

Coulomb interaction with other cells, an isolated cell would have

a ground state consisting of a linear combination of these two

polarizations with a net polarization of zero.

Once the binary information is available to us, we must be

able to transmit it as well. We may define the P > 0 and P <

0 state as the bit value of ‘‘1’’ and ‘‘0’’, respectively, to transmit

the binary information between the two cells. The charge state in

one cell can be switched by a neighboring cell through the inter-

cell Coulomb interaction. Consider two QCA cells adjacent to
This journal is ª The Royal Society of Chemistry 2011
each other. Suppose we fix the polarization of the driver cell to

P1, what is the polarization of the responder cell P2? To answer

this question, we have calculated the cell–cell response functions

for different QCA cell architectures. In case one, two QCA cells

are aligned vertically next to each other, as shown in Fig. 4a. We

calculate P2 as a function of P1 for the fixed apparent inter-dot

distance (M2 ¼ 5, see Fig. 1c) and a changing inter-cell distance

(L1, see Fig. 4a). The polarizations of the two cells (P1 and P2)

are opposite to each other, as the electron prefers to occupy the

different QDs in the neighboring cells due to the Coulomb

repulsion. In addition, the response function is highly non-

linear, a very small polarization of the driver cell P1 will induce

nearly complete polarization of the responder cell P2 (Fig. 4b).

Such abrupt polarization response function is highly desirable

for storing the bit information, because it ensures the bit value to

be encoded unambiguously. We may also fix the inter-cell

distance (L1 ¼ 1 nm) and change the apparent inter-dot distance

(M2). As shown in Fig. 4c, for small M2, P2 shows a linear

relation with P1, i.e. a larger polarization of the driver cell is

needed to induce a high polarization of the responder cell. With

the increasing M2, this response function becomes more and

more non-linear, i.e. a small polarization of the driver cell is

sufficient to induce a high polarization of the responder cell. In

case two, two QCA cells are aligned horizontally next to each

other, as shown in Fig. 4d. Now the polarizations of the two cells

(P1 and P2) have the same direction, i.e. the electron prefers to

occupy the same (left or right) dot in each cell. On the other

hand, the response functions (Fig. 4e and f) behave qualitatively

the same as those in the vertical arrangement of QCA cells

(Fig. 4b and c). From Fig. 4, we see that there are two important

factors in determining the performance of QCA. First, the inter-

dot coupling energy (governed by the inter-dot distance) should

be small enough to yield strong bistable behavior of each QCA

cell. Second, the inter-cell Coulomb interaction (governed by the

inter-cell distance) should be large enough to yield the complete

polarization of the responder cells.

After establishing the response function between two QCA

cells, we can further calculate the response function of a QCA

array consisting of many cells, as shown in Fig. 5. Again the

QCA cells may be aligned either vertically (Fig. 5a) or horizon-

tally (Fig. 5c). We are interested in the question that given the

polarization of the driver cell, if the inter-cell Coulomb interac-

tion is strong enough to polarize the whole array, so that the

binary information can be transmitted from one place to

another. Fig. 5b shows the polarization as a function of cell

number for the vertical QCA array containing five cells (Fig. 5a).

The polarization of the driver cell is set to values P1¼ 1.0, 0.8, 0.6

and 0.4, respectively. The ground state of the electrons in the

remaining four cells is calculated. Note that the polarization

oscillates between 1 and �1 from the second to the fifth cell,

which are completely polarized for all the input polarizations of

the driver cell. It indicates that the binary information is trans-

mitted without damping in the vertical QCA array (Fig. 5a).

Similar behavior is also observed in the horizontal QCA array

(Fig. 5c). The polarization reaches quickly to 1 from the second

cell on, as shown in Fig. 5d. However, if the inter-dot distance is

decreased or the inter-cell distance is increased, the performance

of the QCA array is seen to decay (not shown). Therefore, by

designing the QCA array and the architecture with appropriate
Nanoscale, 2011, 3, 4201–4205 | 4203
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Fig. 4 Response function of two QCA cells. (a and d) Schematic of two QCA cells in the vertical and horizontal arrangement. L1 and L2 are the inter-

cell distance,P1 and P2 are the polarization of the driver and responder cell, respectively. Filled (empty) rectangles denote the occupation (unoccupation)

of the electron. (b and c) Response functions of QCA in (a) withW¼ 7,M1 ¼ 3,M2 ¼ 5 andW¼ 7,M1 ¼ 3, L1 ¼ 1 nm, respectively. (e and f) Response

functions of QCA in (d) with W ¼ 7, M1 ¼ 3, M2 ¼ 5 and W ¼ 7, M1 ¼ 3, L2 ¼ 6 nm, respectively.

Fig. 5 Response function of a QCA array. (a and c) Schematic of five

QCA cells in the vertical and horizontal arrangement. The ball in the

GQD region denotes the occupation of electron, ‘‘1’’ and ‘‘0’’ label the bit

information. (b) Response function of the vertical-cell QCA withW ¼ 7,

M1 ¼ 3, M2 ¼ 5, L1 ¼ 5 nm. (d) Response function of the horizontal-cell

QCA with W ¼ 7, M1 ¼ 3, M2 ¼ 5, L2 ¼ 8 nm.

4204 | Nanoscale, 2011, 3, 4201–4205
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inter-dot and inter-cell distances, high performance of binary

information transmission can be achieved.

To further demonstrate the validity of GQD-QCA, we finally

show a simple design of the GQD-QCAmajority gate (NOR and

NAND). As shown in Fig. 6, four QCA cells are arranged in T-

shape architecture. The polarization of the central cell is assigned

as the output (Out), the polarization of the left and right cell is

assigned as operands B and C, respectively, and that of the top

cell as a programming bit A. We input the polarization of cells A,

B and C, and calculate the resulting electron ground state

(polarization) of the central cell. The truth table of the

programmable majority gate, i.e. the input and output polari-

zations, is shown in Table 1. If A is programmed as ‘‘1’’, the logic

is Out ¼ BXC, a NAND gate; if A is programmed as ‘‘0’’, the

logic is Out ¼ BWC, a NOR gate. These are two fundamental

gates, from which all other gates can be constructed. This scheme

therefore provides, in principle, an effective design for all digital

logic operations.

Unlike nanotube, GQD devices will most likely have irregu-

larities and defects on the edges.22 In our previous work,18 we
This journal is ª The Royal Society of Chemistry 2011
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Fig. 6 A QCA majority gate. Schematic of four QCA cells in the T-

shape arrangement as a majority gate.W¼ 7,M1¼ 3,M2¼ 5, L1¼ 5 nm,

L2 ¼ 8 nm. A, B and C are the input bits, Out is the output bit. Polari-

zation labels are the same as those in Fig. 5.

Table 1 Truth table of the programmable majority gate. The input and
output polarizations are listed in the brackets

Logic gate A (P) B (P) C (P) Out (P)

NAND Out ¼ BXC
‘‘1’’ (1) ‘‘1’’ (1) ‘‘1’’ (1) ‘‘0’’ (�0.997)

‘‘0’’ (�1) ‘‘0’’ (�1) ‘‘1’’ (0.999)
‘‘1’’ (1) ‘‘0’’ (�1) ‘‘1’’ (0.985)
‘‘0’’ (�1) ‘‘1’’ (1) ‘‘1’’ (0.985)

NOR Out ¼ BWC
‘‘0’’ (�1) ‘‘1’’ (1) ‘‘1’’ (1) ‘‘0’’ (�0.999)

‘‘0’’ (�1) ‘‘0’’ (�1) ‘‘1’’ (0.997)
‘‘1’’ (1) ‘‘0’’ (�1) ‘‘0’’ (�0.985)
‘‘0’’ (�1) ‘‘1’’ (1) ‘‘0’’ (�0.985)
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have demonstrated that the QD states still exist even under the

presence of the irregular edges. However, the energy positions of

these QDs are sensitive to the edge profile. When two QDs are

coupled together, the corresponding QCA cell parameters will

also depend on the edge profile, and it is equivalent to an

imperfect QCA cell. Several researchers have investigated fault

tolerance properties and robustness of QCA logic gates by

considering imperfect QCA cells.23–25 So, it would be interesting

to carry out similar studies for the proposed GQD QCA cells in

the future.
Conclusion

Our studies show that it is possible to transmit binary informa-

tion and realize the logic operation through GQD-QCA. The

basic element of QCA is a cell with two coupled GQDs. It is

worth to point out that GQD construction should not be limited

to the SMS GNR junctions as we presented here, other graphene

nanostructures may also be utilized as QD building blocks for

QCA. For example, if two graphene nanoflakes are connected

together, it forms a two-QD QCA cell. In fact, the graphene

nanoflake has already been studied as QD for the Coulomb

blockage effect in the experiment.26,27 The flexibility in designing

graphene based QCA cell provides more freedom for experi-

mental fabrication. In addition, for reading and writing binary

information, the QCA devices must be connected with external

circuits. This can be difficult for the molecular QCA device,
This journal is ª The Royal Society of Chemistry 2011
because there exists usually a large contact resistance between the

metal electrodes and molecules due to the very small contact

area. However, the GQD-QCA devices may circumvent this

difficulty, because they can be easily connected to the outside

circuits exclusively via metallic GNRs, which serve as extensions

of metal electrodes to make contact with the QCA, so as to

minimize the contact resistance.15 These additional advantages

merit the nanopatterned GQDs even more attractive as building

blocks for QCA.
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